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Abstract. The one-dimensional, discrete Schriidinger equation is studied analytically for a 
c l ~ s s  of quasiperiodic Hamiltonians known as the copper mean. The lattice is described by 
a recursion formula SL+ = SL- IS1. - IS1., L = 2,3 ,  . . . , given the two initial sequences S,, and 
S,. Extended states are shown to exist for energies satisfying TrT, = 0 and Tr{(To)-’T,} = 2 
where TL is the transfer matrix for the Lth generation of the quasicrystal. Also, periodic 
states are shown to exist quite generally in a subclass of the copper mean. A specific one- 
dimensional quasicrystal is given as an example of this, and is shown to have exclusively 
periodic states. 

1. Introduction 

Since the experimental discovery (Shechtman et a1 1984) that the diffraction pattern of a 
rapidly cooled AlMn alloy can show sharp Bragg peaks of crystallographically forbidden 
symmetry, and the theoretical work by Levine and Steinhardt (1984) showing that 
such patterns are to be expected from certain ordered structures without translational 
symmetry, quasicrystals have been a subject of great interest. The advent of new 
experimental techniques allowing for the fabrication of high-quality superlattices includ- 
ing quasi-period ones (Merlin et a1 1985, Karkut et a1 1986) has further increased the 
efforts to understand these, in many ways, exotic materials. The physical properties of 
one-dimensional periodic systems are generally very different from those of disordered 
systems. For example, the electronic energy spectrum of a periodic lattice is known to 
consist of absolutely continuous bands (Reed and Simon 1978) and the wavefunctions 
are all extended. This is in sharp contrast to amorphous one-dimensional solids which 
have pure point spectrum and exclusively exponentially localised states. The study of 
quasicrystals has introduced a new class of systems in many ways intermediate between 
the periodic and amorphous extremes. The by far most studied one-dimensional 
quasicrystal, the Fibonacci sequence which is best described by the substitution rule A 
+ AB, B + A, is generally believed to have a Cantor set spectrum of zero Lebesgue 
measure and exclusively critical states (Kohmoto et a1 1987, Kohmoto et a1 1983). 
These states are neither localised nor extended in the classical sense, but something 
intermediate. The study of other quasicrystals has unveiled a wealth of systems with 
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properties ranging from crystal-like to random-like and mixtures of the two. For 
example, the Rudin-Shapiro and the Thue-Morse chains show random-like and crystal- 
like hopping conduction respectively (Aldea and Dulea 1988) Also, numerical cal- 
culations indicate extended ‘Bloch-like’ electronic states in the Thue-Morse quasicrystal 
(Riklund et a/ 1987) as well as localised, critical and extended states in the system 
given by the inflation rule A + ABBB, B -+ A (Severin and Riklund 1989). Bloch-like 
spinwaves has also been found (Riklund and Severin 1988) in an aperiodic ferromagnetic 
crystal of the Thue-Morse type. For some realisations of quasicrystals generated by 
SL + = SL - lSL - J,, L = 2, 3, . . . numerical analysis shows the existence of localised 
electronic states (Gumbs and Ali 1988a) and extended magnetic excitations (Kolar and 
Ali 1989). 

In this paper we study the electronic eigenstates of a class of quasicrystals generated 
by the inflation scheme 

S L + 1  = S L S L  (1) 
where S ,  denotes the Lth generation of the quasicrystal. Given two starting sequences 
So and SI ,  the sequence SL  is thus totally determined. The model considered here is the 
on-site tight-binding model with the equation of motion given by 

V n L l  + V ~ - I  + VnVti = E V n  (2) 
where V ,  denotes the wavefunction on site n ,  Vn the site energy and E the eigenenergy 
of the electron. The diagonal elements V,  are given by VA(VB) if n is a site of type A (B). 
The nearest neighbour hopping integral, t ,  is set equal to unity throughout this paper. 
The existence of extended states and, in a subclass of (l), periodic states is shown 
analytically for certain energies. 

2. Transfer matrix and trace map formalism 

It is very useful to write equation (2) as 

and to define the total transfer matrix TL for a chain of generation L and length N as 

T L  = M(N)M(N - 1 ) .  . . M(2)M(1). 

The energy spectrum for a system of length Nand periodic boundary conditions is now 
taken to be the set (Reed and Simon 1978) 

{ E  I IXLI 21 X, = Tr T,(E) 

where, for systems satisfying ( l ) ,  we have the following map. 

It should be noted that y is an invariant of the map (1). The trace map (4) has previously 
been studied numerically by Gumbs and Ali (1988b) who found a large number of 
bounded orbits and for the particular choice y = 2 a dense set of initial points giving 
non-escaping orbits. This is in sharp contrast to the maps derived from systems satisfying 
LL+ I = ( S J Z S L  - where the non-escaping points lie on a set of zero Lebesgue measure 
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and the wavefunctions are all critical. For the special case y = 2, the trace map has the 
following non-escaping orbit; X ,  = 0, X,, = -2 and X,, , = 2, K 2 2. The aim of this 
paper is to show that the eigenenergies giving rise to these orbits correspond to extended, 
and in a special class of systems satisfying (1) even periodic, eigenstates. 

3. Solution of the equation of motion 

First, we need to observe that an arbitrary generation L of the chain S, can be constructed 
as a sequence consisting of only two different sub-sequences SK and S K -  J K -  where 
K < L ,  i.e. 

s, = SOSOS, S3 = SlSlS* = S,S,S(ps,S, 
S4 = S2S2S3 = SoSoSISoS~SISIS,S~SoSl  etc. 

Note that S, and S K -  lSK- always occur an odd number of times each in SL .  If N is the 
number of sites in S, ,  we can write the periodic boundary conditions as 

V N  VO 
If, for a particular eigenenergy E ,  X K  = 0 then (T,)* = - I  where I is the 2 x 2 identity 
matrix. This follows since for 2 x 2 unimodular matrices T2 = T Tr T - I. Furthermore, 
the following relation holds for 2 x 2 unimodular matrices satisfying Tr T = -2. 

T" = (-l)"+'nT + (-l)"+'(n - 1)l. (6) 
A proof is given in the appendix. Observing then that if X ,  = 0 then (T,)' and TK+l 
commutes and the boundary condition ( 5 )  can, using (6), be written 

where n is number of sub-sequences SK+I in the whole chain S ,  containing N sites. 
Equations (7) can also be written 

(8) 
(T,+l)lly,l + (T,+1)12vo = -v1 

(T,+1)71v1 + (T,+1)22vo = -Vo 
Given that Det T,, = 1 and Tr TK+ = -2, equations (8) are actually equivalent and 
have the solutions 

(TK+ 1) 12 vo = 0 (TK+1)21 V l  = 0 (TK+1)11 = -1. 

Since equations (7)-(9) are all independent of n it is obvious that 

and 
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Figure 1. The wavefunction with eigenenergy E = 1.0 for the copper mean with S,, = A ,  
S ,  = ABA, VA = 1.0. V ,  = - 1.0. y ( E  = 1.0) = 2 and X o  = 0. The quasiperiodic character 
of the wavefunction is clearly seen. 

wherePo and p1 denote the lengths of S,SK and SK+ respectively. The result of T K T K  or 
T,+ acting on ( V,  + - V J .  The wavefunction will thus, to within 
a change of sign, be the same in every block SK+ of the chain, and the same argument 
holds for the blocks S,S,. There will thus be no decay of the wavefunctions on length 
scales of the order of S K + , ,  i.e. the states are extended. In general these states will 
not be periodic, instead they will have the same symmetry as the lattice itself. The 
wavefunction will be quasiperiodic. In figure 1 we show a quasiperiodic wavefunction 
computed for the system obeying (1) with So = A, SI = ABA. The sequence is thus 
given by AAABAAAABAABAABAAAABA . . . . The eigenenergy is E = 1.0 satis- 
fying X o  = 0. The on-site energies used are V ,  = V ,  V ,  = - V ,  V = 1.0. 

V,)  is just (-I),~ + 

4. Systems with periodic solutions 

In this section we will describe how periodic solutions to the three term recurrence 
relation (2) can arise from a quasiperiodic distribution of V,,. The validity of the reasoning 
is by no means limited to binary sequences but can easily be extended to quasicrystals 
with three or more different site energies. As an illustration, we shall give one simple 
example of a binary quasicrystal where all solutions of (2) subject to the boundary 
conditions ( 5 )  or to Dirichlet boundary conditions (qAi = qo = 0) will be periodic such 
that q,,+,, = q,,, where P i s  the length of the block SK+2 if the eigenenergy, E ,  satisfies 
X,(E) = 0. Consider a quasicrystal built according to the inflation rule (1) with the two 
initial words So and S1 given by So = xoSo, S1 = yoSox"So, where So is an arbitrary word 
and xo, y o  are two arbitrary letters. Then, since S 2  = SoSoS, = xoSoxoSoyoSoxoSo = 
y'S'x'S' and SI = x'S' with S' = SoxoSo, x 1  = y o  and y '  = xo, it follows from induction 
that 

S K  = X K S K  S K +  1 = y K S K X K S K  K = 1 , 2 , 3 .  . . 
(10) 

X K + l  = K y K + l  = X K .  Y s K + l  = s K X K s K  

From the map (l), it also follows that the matrix 
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Figure 2. Periodic wavefunctions for the copper mean lattice with S,, = A ,  S, = BA,  
V ,  = 1.0. V ,  = - 1.0. = 2 .  In this model y is energy independent. The eigenenergies 
are E = 1.0. E = v 3 . 0  and E = - d 3 . 0  respectively satisfying X,, = 0, X ,  = 0 and X ,  = 0. 
Thestatesareperiodicwithperiods4,8and8sites. TheperiodsPsatisfyP = 2K+?i fXK(E)  = 
0. The inset to figure 2(b)  shows I),, for 0 S n S 32 together with the first 32 letters in the 
sequence. The physical reason for the periodicity of the solution is that y,, = 0 on the sites 
separating the periodically repeated subword. The electron thus 'feels' only the periodic 
sublattice. 

WK TK+ I(T,y)-' = (T,+ 1>'(TK)-' = [T,(T,+ 1)-']-' (WK- I ) - ' .  

Notice also from (10) we may write symbolically 

S K + l ( S K ) - '  = yK,K,K,K(,K)-'(XK)-l(SK)-l(XK)-l = y K ( X K ) - '  (11) 
Assume now X ,  = 0 j (T,)' = - 1 .  Then, from ( l l ) ,  W K  = -TK+I = Y K ( X K ) - '  where 
X, and Y ,  are the transfer matrices corresponding to the letters xK and y K  respectively. 

1 -1 1 VXK- v y K  

0 

Observe that the trace map invariant y is given by y = Tr W K  = Tr W K + l  = 2. Here 
obviously (TK+ = -1 and the second of equations (9) apply. Since we are interested 
in the non-periodic casexK # y K ,  (TK+ J I 2  # 0 3 yo = 0. Also, observing that SKSK and 
S,, contain the same number, p ,  of letters, and recalling that the effect of TkTk or Tk+  
acting on v is only a change of sign, we have 

Since the blocks S,SK and SK+I  are identical except for the last letter and the input 
values, by (12), alternate only in sign, the solutions in two consecutive blocks are the 
negative of each other. Therefore the wavefunction clearly obeys 

v n i z p  = - v n + p  = v,, 
and is thus indeed periodic with periodicity 2p. In figure 2(a)-(c) the periodic solutions 
for the quasicrystal S,, = A, SI  = BA, S2 = AABA with eigenenergies E = V, E = 
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E 

Figure 3. The traces X,,, X,, X 2  and X? for the copper mean with S,, = A. S, = BA, 
V ,  = 1.0. VB = - 1.0. The number of zeros of X,is seen to be 2". The cycle X,, = 0, X, = 2. 
X 2  = 2. X, = 2 .  . . is also seen. 

(V' + 2)' are displayed. The lattice is thus represented by 
the sequence BABAAABABABAAABAAABAAABABABAAABA . . . . This 
quasicrystal can be constructed according to the above scheme by letting S o  be the 
empty word, x" = A and y" = B.  The energies chosen satisfy X O  = 0, XI = 0 and XI = 0 
respectively. We therefore expect the corresponding wavefunctions in figure 2(a)-(c) to 
have the periodicities 4, 8 and 8. From the figure, the origin of periodicity described 
above, is easily seen. The lattice is, as we have shown, built up from periodic repetition 
of blocks S K  separated only by one A or B site. Since the wavefunction is zero on those 
sites it is not affected by the deviation from lattice periodicity introduced by these sites. 
The electron effectively 'sees' a periodic lattice. 

It may seem as the requirement that the energy should satisfy X ,  = 0 for some K is 
very strong and that the number of eigenstates for which this treatment is valid therefore 
in general should be small. This is, however, not the case which is illustrated by the 
example S,, = A, SI = BA. Here X i )  = E - V and XI = E* - V 2  - 2 and from (4) we 
see that X,-+ x as E-+ ix, K 2 1. Then, assuming Xo(Eo)  = 0 3 X,(E, )  = -2 and 
X,(E,,) = 2 K > 1, X I  must have two real roots, one to the left and one to the right of 
Eo. By the same reasoning X 2  has 4 roots, two roots between the three previous ones, 
one root to the left of the leftmost and one to the right of the rightmost root of X , .  The 
argument is illustrated in figure 3 which shows X o .  XI, X ,  and X 3  as functions of energy. 
By induction then the number of distinct real roots of X ,  is 2, and the total number of 
roots of X o ,  XI, X 2 .  . . X L - l  satisfying the boundary conditions for a chain SL  of 
generation L is Zn=o,L-  2" = 2L - 1. Note that all roots have multiplicity one since X ,  
is a polynomial of degree 2K and that no energy can be the root of more than one X ,  
since X ,  = 0 3 X,,, = -2, X,+,\, = 2, N * 2. We may therefore conclude that all 
wavefunctions satisfying q,,, = qo = 0 are periodic. 

and E = - (V2 + 2)' 

5. Summary 

We have performed an analytical treatment of a class of quasicrystals with an inflation 
rule given by S L + l  = SL-,SL- The existence of extended and in a subclass even 



Periodic and quasiperiodic wavefunctions 8857 

periodic states is shown. A specific example with exclusively periodic states satisfying 
Dirichlet boundary conditions is given. This class of quasicrystals has previously been 
studied by Gumbs and Ali under the name copper mean lattices. They performed a 
numerical study of the trace map for the two classes SL+ I = (SL,-I)’lSL and S L + ,  = 
SL,_,(SL)’I and concluded that in terms of the escape rates the two classes should be 
considered to be the reverse of each other (Gumbs and Ali 1588b). The latter class above 
is generally believed to have only critical states whereas numerical calculations has 
shown electronic localisation (Gumbs and Ali 1988a) and extended magnetic excitations 
(Kolar and Ali 1989) for copper mean lattices. The analytical results presented in this 
work agrees with the above conclusion. Considering also the numerical finding that 
the system S L t l  = (SL-J3SL gives rise to both localised, critical and extended states 
(Severing and Riklund 1989) gives further evidence that the first class above is indeed 
very different from the second. 
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Appendix. Derivation of equation (6) 

We consider 2 x 2 matrices T such that Det T = 1 and Tr T = -2, then 

Theorem: T” = ( - l )”+lnT + ( - l ) ‘ !+’ (n  - 1)1, n 2 1 

Since the theorem is true for n = 1 the proof follows by induction. 

T2 = T Tr T - I and Tr T = -2 then yields 

TtI + 1 = (-l)r1+’n(-2T - I) + ( - l )”+’(n - l ) T  

Assume the theorem is true, then T”” = (-1)”’lnT’ + ( - l )”+’(n  - 1)T. Using 

= (-1)”+’(-2n + n - l ) T  - ( - l ) ”+ ln l  

= (- l ) ”+2(n  + l ) T  + (- l)”+’nl. 
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